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Fields of the Contrawound Toroidal Helix Antenna
R. C. Hansen, Life Fellow, IEEE, and Richard D. Ridgley

Abstract—Exact vector potential integrals are written in
spherical coordinates for the CWTHA. From these the far fields
are expressed, both for the CWTHA (dipole field) and for a
single winding (loop field). The vector potentials are numerically
integrated; the results give the dipole field for a given current and
ratio of dipole field to loop field.

Index Terms—Dipole, electrically small antenna, loop, toroidal
helix.

I. INTRODUCTION

A TOROIDAL helix consists of a helical coil formed into a
toroidal shape and fed where the ends of the helix come

together. Such an antenna has a circumferential current that pro-
duces a loop field and a toroidal tube of magnetic flux produced
by the currents in the turns of the helix. As this circumferential
magnetic field is similar in some respects to that of a dipole (on
the toroid axis), this field is called the dipole field. It would be
expected that the loop field would be much stronger than the
dipole field. A clever idea was to wind two helical windings, in
opposite directions, in the toroidal shape, with the windings ex-
cited out of phase, see Fig. 1. Circumferential currents now
cancel, reducing the loop field to zero, while the circumferen-
tial magnetic fields add, thus, augmenting the dipole field by a
factor of 2. This concept was patented by Dr. James F. Corum
in 1986 and 1988 [1], [2], and is here called the CWTHA. The
toroid would be horizontal, with its axis vertical and the dipole
field might act like a vertical dipole or whip.

Of most interest is an omnidirectional pattern in the plane
of the toroid; this implies a near constant current around each
winding. Moment method studies, which will be reported later,
have indicated a winding length of roughly or less to satisfy
this condition. To effectuate the CWTHA concept, a substantial
number of turns must be used; thus, the toroid diameter will be
small in wavelengths. Winding length is approximately

(1)

where the toroid radius is, the turn radius is , and is the
number of turns.

It is the purpose of this paper to derive exact vector potentials
for the CWTHA and to make far-field approximations for the
dipole mode and loop mode fields.

Although the paper will show that the CWTHA is a very poor
antenna, presentation of a detailed negative result is important
due to the wide publicity engendered about the CWTHA and
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because many government organizations and companies have
hoped that the CWTHA would replace whip-type antennas.

II. V ECTORPOTENTIAL INTEGRALS

It is feasible to write exact vector potential integrals because
the coordinates of a point on the helix can be written in terms of
a single spherical coordinate variable[3]

(2)

The coordinate system is shown in Fig. 1. For the second
winding the coordinate changes sign.

The vector potential integral is

(3)

where , and

(4)

with

The integration vector is

(5)

The vector potentials of interest are expressed in spherical
coordinates for one winding

(6)

(7)

(8)

Note that this problem is unusual in that all three components are
needed to get the exact fields. The constant value of current is
and is the distance from the integration point to the far-field
point .

Dot products relate the integration vector to the far-field
vector [4]

(9)

(10)

(11)

(12)

(13)
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Fig. 1. Contrawound Toroidal Helix Antenna (on foam core).

(14)

(15)

(16)

(17)

Equation (6) is expanded by use of (9), (12), and (15) with (5).
Similarly (7) uses (10), (13), and (16) with (5); (8) uses (11),
(14), and (17) with (5). From (2), can be written in terms of

(18)

Trig functions and derivatives needed in (9) through (17) are
simply

(19)

(20)

(21)

Finally the distance is

(22)

For the phase, the far-field approximation gives

(23)

In the denominator, as usual.
Electric field is found from the vector potential

(24)

where . This formulation (Lorentz) avoids the scalar
potential [5].

The far-field vector potential integrals now become

(25)

(26)

(27)

where

(28)

Note that the derivatives in (23) and (24) produce , so that

and (29)

has not been calculated, as is of most interest.
For these small antennas, the loop field reduces to the text-

book result

(30)

and this reduces further

(31)

III. D OUBLE WINDING

When the counter winding is added, and
change sign. With the 180excitation of this winding, several
terms in the vector potential integrals cancel. In, only the

term remains. In , only the term
remains. Both terms in cancel, leaving zero as expected.
All remaining terms are doubled.

IV. NUMERICAL EVALUATION

Neither of the vector potential integrals can be integrated in
closed form. Evaluation was performed via double precision
complex numerical integration. A 128 point Gaussian and a 300
point Simpson gave the same results to at least six significant
figures.

An approximate formula is obtained from [5]; for ,
the expression (5) of that paper can be summed exactly, with
the result

(32)

In azimuth the pattern is constant (omnidirectional), even for
small . Table I shows results computed from eqs. (26) and
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(29), and from the ring-bar result eq. (32). Agreement is excel-
lent. This validates the vector potential results.

Table II gives the ratio of for several CWTHA cases.
This field ratio is very closely

(31)

An obvious question is what parameters give the highest
value. Using the constraint of maximum winding length equal

, the field is maximized when is maximized. This occurs
for . Next is maximized, which occurs for small .
However this yields maximum dipole field for a given current,
but since the radiation resistance increases as, a small value
of is a poor choice.

The field ratio behaves differently. Again, is max-
imized; next the number of turns is selected large, as increasing

also increases the loop field. Because the objective is to
cancel the loop mode field, this ratio is less important than the
value of alone.

For the contrawound toroidal helix, where has only a
single term in the vector potential, the numerically integrated
results are exactly twice those of Table I. Because the second
winding doubles the component, the ratios of
Table II are doubled, or dB added. However the ratios are
still small: to dB.

V. MEASUREMENTS

A measurement program utilizing several facilities is nearly
complete and will be reported in a subsequent paper along with
detailed moment method results. Both measurements and sim-
ulation have proven difficult due to the very small values of ra-
diation resistance. Almost all measured data of which the au-
thors are aware are contaminated by feed cable radiation and
by chamber/range background levels. As mentioned earlier, the
toroid diameter is small in wavelengths. For example, with a
toroid/turn diameter ratio of 5 and 10 turns, the toroid diameter
in wavelengths must be no larger than . The loop field ra-
diation resistance is of the order of 30 milliohms so the loop
efficiency is not high. Further, the large VSWR occurring when
reactance matched to 50 ohms results in a significant matching
circuit loss. If the antenna is not matched, the mismatch loss
is of the order of 40 dB. This is relevant as the measured dipole
field must be compared with another measured field and the loop
field is convenient. Absolute gain measurement appears impos-
sible due to microohm radiation resistance for the CWTHA.

Low as the unmatched loop field gain is, the CWTHA gain is
much lower. For the example above, the dipole field radiation re-
sistance is roughly 16 microohms and the unmatched mismatch
loss is roughly 75 dB; values very difficult to measure.

In moment method simulation, representing each turn by
twelve linear segments gives results close to circular values.
Again, for the example above, with turn diameter of ,
segment lengths are roughly . Some popular codes
produce significant errors in calculating impedance of such
short skew segments.

TABLE I
EXACT AND RING-BAR E

TABLE II
DIPOLE/LOOPFIELD RATIO

VI. DIRECTIVITY AND BANDWIDTH

The CWTHA, both single winding and dual winding, have the
directivity of an electrically small antenna: 1.5. Gain, as defined
by IEEE, includes efficiency and efficiency is typically low. Ra-
diation resistance for a single winding (loop field) is essentially
that of a single turn loop so that efficiencies are generally in
the range of 40 to 80%, depending on the wire diameter. The
CWTHA radiation resistances tend to be in the milliohm to mi-
croohm range so that efficiencies, hence gains, are very small.

The CWTHA is basically an inductive winding, with reac-
tances of the order of several hundred ohms. Because the total
antenna resistance tends to be well below one ohm, thetends
to be large, and the bandwidth much less than one percent. It
was stated by the inventor (Dr. Corum) that this was a narrow-
band antenna.

Only a few patterns have been calculated as they proved to be
as expected, those for an electrically short dipole (in elevation).
Azimuth patterns are closely circular.

VII. CONCLUSION

The omnidirectional CWTHA is a very poor radiator of
dipole fields, as shown by the exact vector potential analysis.
Results are in excellent agreement with a previous ring-bar
approximate analysis.
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